Shielded metal arc welding (SMAW), also known as manual metal arc (MMA) welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode coated in flux to lay the weld. An electric current, in the form of either alternating current or direct current from a welding power supply, is used to form an electric arc between the electrode and the metals to be joined. As the weld is laid, the flux coating of the electrode disintegrates, giving off vapors that serve as a shielding gas and providing a layer of slag, both of which protect the weld area from atmospheric contamination.
Because of the versatility of the process and the simplicity of its equipment and operation, shielded metal arc welding is one of the world's most popular welding processes. It dominates other welding processes in the maintenance and repair industry, and though flux-cored arc welding is growing in popularity, SMAW continues to be used extensively in the construction of steel structures and in industrial fabrication. The process is used primarily to weld iron and steels (including stainless steel) but aluminium, nickel and copper alloys can also be welded with this method.


After the discovery of the electric arc in 1800 by Humphry Davy there was little development in electrical welding until Nikolay Benardos developed carbon arc welding, obtaining patents in the 1880s showing a rudimentary electrode holder. In 1888 consumable metal electrode was invented by Nikolay Slavyanov. Later in 1890 C. L. Coffin received U.S. Patent 428,459 for his arc welding method that utilized a metal electrode. The process, like SMAW, deposited melted electrode metal into the weld as filler.[2]
Around 1900 A. P. Strohmenger and Oscar Kjellberg released the first coated electrodes. Strohmenger used Clay and lime coating to stabilize the arc, while Kjellberg dipped iron wire into mixtures of carbonates and silicates to coat the electrode.[3] In 1912 Strohmenger released a heavily coated electrode but high cost and complex production methods prevented these early electrodes from gaining popularity. In 1927 the development of an extrusion process reduced the cost of coating electrodes while allowing manufacturers to produce more complex coating mixtures designed for specific applications. In the 1950s manufacturers introduced iron powder into the flux coating, making it possible to increase the welding speed.[4]
In 1938 K. K. Madsen described an automated variation of SMAW, now known as gravity welding. It briefly gained popularity in the 1960s after receiving publicity for its use in Japanese shipyards though today its applications are limited. Another little used variation of the process, known as firecracker welding, was developed around the same time by George Hafergut in Austria.


To strike the electric arc, the electrode is brought into contact with the workpiece by a very light touch with the electrode to the base metal then is pulled back slightly. This initiates the arc and thus the melting of the workpiece and the consumable electrode, and causes droplets of the electrode to be passed from the electrode to the weld pool. As the electrode melts, the flux covering disintegrates, giving off shielding gases that protect the weld area from oxygen and other atmospheric gases. In addition, the flux provides molten slag which covers the filler metal as it travels from the electrode to the weld pool. Once part of the weld pool, the slag floats to the surface and protects the weld from contamination as it solidifies. Once hardened, it must be chipped away to reveal the finished weld. As welding progresses and the electrode melts, the welder must periodically stop welding to remove the remaining electrode stub and insert a new electrode into the electrode holder. This activity, combined with chipping away the slag, reduce the amount of time that the welder can spend laying the weld, making SMAW one of the least efficient welding processes. In general, the operator factor, or the percentage of operator's time spent laying weld, is approximately 25%.[6]
The actual welding technique utilized depends on the electrode, the composition of the workpiece, and the position of the joint being welded. The choice of electrode and welding position also determine the welding speed. Flat welds require the least operator skill, and can be done with electrodes that melt quickly but solidify slowly. This permits higher welding speeds. Sloped, vertical or upside-down welding requires more operator skill, and often necessitates the use of an electrode that solidifies quickly to prevent the molten metal from flowing out of the weld pool. However, this generally means that the electrode melts less quickly, thus increasing the time required to lay the weld.


The most common quality problems associated with SMAW include weld spatter, porosity, poor fusion, shallow penetration, and cracking. Weld spatter, while not affecting the integrity of the weld, damages its appearance and increases cleaning costs. It can be caused by excessively high current, a long arc, or arc blow, a condition associated with direct current characterized by the electric arc being deflected away from the weld pool by magnetic forces. Arc blow can also cause porosity in the weld, as can joint contamination, high welding speed, and a long welding arc, especially when low-hydrogen electrodes are used. Porosity, often not visible without the use of advanced nondestructive testing methods, is a serious concern because it can potentially weaken the weld. Another defect affecting the strength of the weld is poor fusion, though it is often easily visible. It is caused by low current, contaminated joint surfaces, or the use of an improper electrode. Shallow penetration, another detriment to weld strength, can be addressed by decreasing welding speed, increasing the current or using a smaller electrode. Any of these weld-strength-related defects can make the weld prone to cracking, but other factors are involved as well. High carbon, alloy or sulfur content in the base material can lead to cracking, especially if low-hydrogen electrodes and preheating are not employed. Furthermore, the workpieces should not be excessively restrained, as this introduces residual stresses into the weld and can cause cracking as the weld cools and contracts.


SMAW welding, like other welding methods, can be a dangerous and unhealthy practice if proper precautions are not taken. The process uses an open electric arc, which presents a risk of burns which are prevented by personal protective equipment in the form of heavy leather gloves and long sleeve jackets. Additionally, the brightness of the weld area can lead to a condition called arc eye, in which ultraviolet light causes inflammation of the cornea and can burn the retinas of the eyes. Welding helmets with dark face plates are worn to prevent this exposure, and in recent years, new helmet models have been produced that feature a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, especially in industrial environments, transparent welding curtains often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield nearby workers from exposure to the UV light from the electric arc, but should not be used to replace the filter glass used in helmets.[9]
In addition, the vaporizing metal and flux materials expose welders to dangerous gases and particulate matter. The smoke produced contains particles of various types of oxides. The size of the particles in question tends to influence the toxicity of the fumes, with smaller particles presenting a greater danger. Additionally, gases like carbon dioxide and ozone can form, which can prove dangerous if ventilation is inadequate. Some of the latest welding masks are fitted with an electric powered fan to help disperse harmful fumes.

Application and Materials

Shielded metal arc welding is one of the world's most popular welding processes, accounting for over half of all welding in some countries. Because of its versatility and simplicity, it is particularly dominant in the maintenance and repair industry, and is heavily used in the construction of steel structures and in industrial fabrication. In recent years its use has declined as flux-cored arc welding has expanded in the construction industry and gas metal arc welding has become more popular in industrial environments. However, because of the low equipment cost and wide applicability, the process will likely remain popular, especially among amateurs and small businesses where specialized welding processes are uneconomical and unnecessary.[11]
SMAW is often used to weld carbon steel, low and high alloy steel, stainless steel, cast iron, and ductile iron. While less popular for nonferrous materials, it can be used on nickel and copper and their alloys and, in rare cases, on aluminium. The thickness of the material being welded is bounded on the low end primarily by the skill of the welder, but rarely does it drop below 0.05 in (1.5 mm). No upper bound exists: with proper joint preparation and use of multiple passes, materials of virtually unlimited thicknesses can be joined. Furthermore, depending on the electrode used and the skill of the welder, SMAW can be used in any position.


 Mesin Kimpalan Arka
Mesin kimpalan arka adalah merupakan sebuah alatubah perendah iaitu ia mngubah dari voltan tinggi kepada voltan rendah tetapi menghasilkan arus yang tinggi untuk menerbitkan arka bagi kegunaan mengimpal. Dilengkapi dengan kabel pemegang elektrod dan juga kabel bumi ke meja kerja.

Fungsi Alat Pengubah

Alat pengubah adalah komponen yang terdapat pada sebuah mesin kimpalan arka yang berfungsi untuk mengurangkan voltan dan meninggikan arus bagi menerbitkan arka untuk tujuan kerja mengimpal. Alat ubah ini dikenali sebagai alatubah perendah.

Komponen-komponen asas dalam sesebuah mesin kimpalan arka adalah 
terdiri daripada:

- Alatubah
- Kebel bumi
- Kebel elektrod
- Pemegang Elektrod
- Bekalan kuasa

Jenis-jenis mesin kimpalan arka

Terdapat lima jenis mesin kimpalan arka. Iaitu:

- Jenis ‘rectifier (DC)
- Jenis alatubah (AC)
- Jenis kombinasi AC/DC
- Jenis pacuan enjin. (petrol atau disel)
- Jenis pacuan motor elektrik.(janakuasa)

Jenis ‘rectifier’(DC)

Mesin kimpalan arka jenis ‘rectifier’ (penerus) digunakan kerana ianya mempunyai dua pilihan aliran arus, iaitu arus terus kekutuban berbalik dan arus terus kekutuban lurus.

Punca positif disambungkan kepada elektrod maka ianya adalah kekutuban berbalik. Punca negatif disambungkan kepada elektrod maka ia adalah kekutuban lurus. Semua jenis kerja mengimpal bagi kebanyakan logam adalah amat sesuai dengan mesin jenis ini. Bagi kerja-kerja pembinaan dan penyelengaraan mesin jenis ini adalah pilihan yang tepat.

- Menghasilkan ‘semburan arka’ (arc blow)
- Arka tidak begitu stabil berbanding jenis janakuasa
- Tiada pilihan untuk ciri-ciri arka.

Jenis arus ulangalik.

Mesin kimpalan arus ulangalik (AC) digunakan adalah kerana ianya menghasilkan arka yang lebih stabil dan tiada berlaku ‘semburan arka’ (arc blow) dengan penembusan yang sederhana dan senyap.

- Mengimpal ke atas logam tertentu dan penggunaan yang terhad.
- Tidak semua elektrod boleh digunakan.
- Mampu beroperasi pada ampiar yang tinggi.

Jenis gabungan/kombinasi AC/DC.

Mesin jenis ini boleh menggunakan kedua-kedua jenis arus. Ianya perlu apabila mengimpal logam tertentu dengan arus yang tertentu. Mempunyai penggunaan yang meluas. Boleh digunakan ke atas banyak jenis keluli dan kedudukan mengimpal.

- Kos yang agak tinggi
- Berlaku ‘semburan arka’ pada sesetengah sambungan

Alat yang digunakan bagi menukar arus ulangalik kepada arus terus ialah ‘rectifier’ atau alat penerus.

Jenis Pacuan enjin petrol /disel ( Arus Terus atau Arus Ulangalik).

Mesin ini boleh digunakan dikawasan yang tiada bekalan elektrik. Boleh membekalkan sama ada arus ulangalik atau arus terus.

- Modal yang besar dan penyelenggaraan yang tinggi
- Bising
- Modal tinggi
- Kos penyelenggaraan tinggi
- Semburan arka (arc blow)
- Memerlukan bahanapi.

Jenis Pacuan motor.

Mesin kimpal arka jenis ini menghasilkan arus terus. Menghasilkan dua pilihan arus terus. Iaitu kekutuban terus dan kekutuban berbalik.

- Terdapat ‘arc blow’ .
- Penyelenggraan yang tinggi. Ianya menggunakan beberus karbon 
dan perlu ditukar pada tempoh tertentu.

Kekutuban Mesin Kimpalan Arka

Terdapat dua jenis kekutuban mesin kimpalan arka . Iaitu:

- Arus Terus Kekutuban Berbalik ( kebel elektrod dipasang pada punca positif)
- Arus Terus Kekutuban Lurus ( kebel lektrod dipasang pada punca negatif)

Ciri-ciri Kekutuban:

Ciri-ciri kekutuban arus terus kekutuban berbalik ialah:

- Kadar kecairan elekrod yang lebih cepat.
- Ketelusan yang cetek
- Kelajuan kimpal yang lebih pantas diperlukan.

Ciri-ciri kekutuban arus terus kekutuban lurus ialah:

- Kadar kecairan letrod yang lambat
- Ketelusan yang dalam
- Kelajuan yang sederhana

 Kaedah Mengimpal Menggunakan Elektrod Bersalut

Terdapat dua teknik mengimpal dengan kimpalan arka gas pelindung. Iaitu:

Teknik Seret.

Menggunakan teknik ini boleh dilakukan dengan elektrod jenis ‘hujung cawan’(deep cup) dimana hujung logam tidak bersentuh dengan bendakerja kerana hujung bahan lakur membentuk seperti cawan. Oleh itu jarak sentiasa kekal pada ketinggian yang sama dan mengahsilkan kumai yang cantik dan kemas.

Teknik Angkat 

Menggunakan teknik ini letrod diangkat pada jarak lebih kurang 1/8 inci dari permukaan bendakerja ketika arka dihidupkan sehingga selesai mengimpal. Teknik ini hendaklah digunakan apa mengimpal dengan elektrod biasa yang bukan jenis ‘deep cup’.

Kesan jarak arka, sudut arka dan kelajuan arka ke atas hasil kimpalan.

Jarak Arka

Jarak arka adalah jarak diantara hujung teras logam elektrod dengan permukaan bendakerja. Dimana arka yang diterbitkan akan dapat dikekalkan pada jarak ini. Jarak arka yang terlalu tinggi akan menyebabkan kumai tidak cantik dan juga ketelusan yang kurang. Jarak arka ialah antara 5.0mm hingga 6.0mm.

Sudut Arka

Sudut yang terbentuk diantara kecondongan elektrod dengan permukaan bendakerja pada arah gerakan elektrod. Sudut arka yang tidak betul akan menyebabkan riak kumai jadi memanjang atau bujur dan menjadikan rupa kumai tidak cantik.

Kelajuan Arka

Kelajuan arka adalah laju gerakan elektrod bergerak ke arah hujung penamat kimpalan. Kelajuan ini biasanya bergantung kepada kadar kecairan elektrod.
Mengimpal terlalu laju akan menjadikan kumai terlalu halus dan tinggi serta kurang ketelusan.